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Abstract

Purpose – The purpose of this paper is to discuss the capability of nonlinear frequency domain
(NLFD) method in predicting surface pressure coefficient presented in the time domain in unsteady
transonic flows.
Design/methodology/approach – In this research, the solution and spatial operator are
approximated by discrete form of Fourier transformation and resulting nonlinear equations are
solved by use of pseudo-spectral approach. Considered transonic flows involve different flow pattern
on the airfoil surfaces. One of the test cases involves moving shocks on both lower and upper airfoil
surfaces and in the two other test cases a moving shock occurs only on the upper surface.
Findings – Pressure distributions presented in the time domain using NLFD are compared with
three test cases. Results show that NLFD predicts reasonable pressure distributions in time domain
except in vicinity of shock positions. Although this method may predict unfair results near shock
positions, however gives good estimates for global properties such as lift coefficient.
Originality/value – In the previous works on NLFD method, the flow field results have been limited
to representing the pressure in the frequency domain or global coefficients such as lift coefficients. No
details of pressure distributions in the time domain have been provided in such investigations. In this
research, by presenting the pressure in the time domain, the conditions on which good pressure
distributions are obtained are demonstrated.
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1. Introduction
The calculation of unsteady flows continues to challenge computational fluid
dynamists (CFD). This challenge comes from the fact that in addition to preserving the
accurate spatial discretization for steady-state solutions, unsteady codes should also
accurately resolve the time history of the solution. The challenge to CFD lies in this
added dimension and its associated computational cost.

The time accurate methods are common ones in solving unsteady flows. These
methods include explicit and implicit time stepping schemes and factored ADI. Although
these methods are applicable to a wide range of unsteady flows, they consume more
computational time than steady-state solvers. In these methods, the semi-discrete form of
governing equations is constructed by discretizing the space while leaving the time term.
Finally, advancing in time leads to the solution.

An alternative to the time accurate methods is to assume a periodic solution over a
time interval regarding the fact that transient portion of solution is of less importance.
Examples of such solutions are among unsteady flows in turbomachinery cascades.
Given the assumption of periodicity, some special methods can be used to calculate the
solution. It is evident that the transient decay of the solution using these methods
cannot be admitted as a part of the solution.
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A less computationally expensive approach for these unsteady flows is to linearize
the flow field about a mean flow solution (Ni and Sisto, 1976; Hall and Crawley, 1989;
Clark, 1992; Holmes and Chuang, 1993; Hall and Lorence, 1993; Hall and Clark, 1993;
Hall et al., 1994). Assuming small unsteady variations, the flow may be decomposed
into two parts: a nonlinear steady or mean flow, plus a linear small perturbation flow.
In general, the steady flow is described by a set of nonlinear partial differential
equations, whereas the unsteady small perturbation flow is described by a set of linear
variable coefficient partial differential equations that by adding pseudo time term
become hyperbolic in time. Because the unsteady perturbation flow is periodic in time,
we may, without loss of generality, represent the unsteady flow as a Fourier series in
time with coefficients that vary spatially. Each Fourier coefficient is described by a set
of partial differential equations. If any unsteadiness in the flow is harmonic in time, it
can be represented as uei!t, where u is complex amplitude of unsteady variable, i is
imaginary number (

ffiffiffiffiffiffi
�1
p

) and ! is the frequency of unsteady disturbances, then the
time derivatives @=@t are replaced by i!, so that time does not appear explicitly.

To reduce the error associated with the linearized form of reduced frequency
approach, nonlinear form of this approach can be used. A number of investigators have
developed frequency domain analysis of nonlinear unsteady flows (Adamczyk, 1984;
Ning and He, 1998; Thomas et al., 2002). Adamczyk (1984) proposed several different
linearizations and averaging operators of the velocity variable to form what he termed
the deterministic stress. This term is similar to the Reynolds stress in that it attempts
to quantify the effects of the unsteady field on the time averaged solution. Adamczyk
(1984) proposed such a modeling for these terms (McMullen, 2003). Ning and He (1998)
used averaging operators to determine the deterministic stress. They proposed
calculating these terms with a modified version of a linearized frequency domain
solver. While the methods differ somewhat in details, most of them can be viewed as a
form of harmonic balance. Although some of the nonlinear effects are addressed in
these methods, the higher order terms are still neglected in the solution of unsteady
modes. The assumptions of the linearization still must apply for these modes, therefore
limiting the applicability of these methods.

None of the preceding methods can adequately account for the strong nonlinearities.
This brings us to methods which represent the full nonlinear equations in the frequency
domain. Efficient periodic solutions to full nonlinear systems of equations were first
proposed by Hall et al. (2000, 2002) using the harmonic balance technique on two-
dimensional (2-D) turbomachinery cascades. This technique utilizes a pseudo-spectral
approach to represent the nonlinear residual in the temporal domain (McMullen and
Jameson, 2006). McMullen et al. (2001, 2002) proposed the nonlinear frequency domain
method which represents a form of the residual in the frequency domain. They also
focused on 2-D turbomachinery flows. Regardless of the approach, iterative methods
were then employed to drive this residual to a negligible value in a manner that is
consistent with steady-state solvers. They have demonstrated the efficiency of this
technique to represent complex nonlinear flow solutions using a minimum number of
modes. If all the modes of the solution converge as quickly as a similar steady-state
calculation, then the cost of the calculation is the product of the cost of a steady solution
and the number of instances used in the time series of the unsteady residual. This is
consistent with linearized methods except that a slight penalty is incurred by the
additional memory required to hold all the unsteady modes simultaneously.

In previous reduced frequency studies, normally the flow field results were
presented in terms of pressure distributions in the frequency domain or integrated
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coefficients such as lift coefficients. No details of pressure distributions in the time
domain were provided in such investigations. This deficiency together with the
question of how well nonlinear effects in the time domain can be modeled in a nonlinear
frequency domain (NLFD) approach provided the aims of this study.

2. Governing equations
For an arbitrary volume of fluid, governing equations in integral form can be
expressed as:

d

dt

ð

V

~WWdVþ
ð

S

~FF � ~NNds ¼ 0 ð1Þ

In this equation,
Ð
V
~WWdV and

Ð
S
~FF � ~NNds are volumetric integrals of the state vector

and surface integrals of fluxes, respectively. ~NN is also normal unit vectors pointed
outward for the considered volume. In two dimensions, the state vector comprises
physical properties of fluid (density �, Cartesian velocity component ui and stagnation
energy E) and can be expressed as the following vector:

~WW ¼

�
�u1

�u2

�E

2
664

3
775 ð2Þ

The flux vector includes transport of these properties and those terms associated with
a moving control volume. If the velocity of control volume surfaces is denoted as~bb, for
each direction, i, the flux vector for a 2-D flow can be expressed as:

Fi ¼

�ðui � biÞ
�u1ðui � biÞ þ �1 ip
�u2ðui � biÞ þ �2 ip
�Eðui � biÞ þ uip

2
664

3
775 ð3Þ

where �ij is the Kronecker delta.

3. Transforming the equations into the frequency domain
The technique used in this study is the finite volume approach where the continuous
surface integrals are represented by a discrete summation of fluxes across a finite
number of faces on the control volume:

ð

S

~FF � ~NN ds ¼
X

cs

~FF � ~SS ð4Þ

Having approximated all the spatial operators, the remaining term in the conservation
laws is the temporal derivative of the volumetric integral of the solution. This is
approximated as the product of the cell volume, V, with the temporal derivative of the
average of the solution over the cell. Adding the spatial and temporal operators
together results in the complete approximation to the governing equations:
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V
@W

@t
þ
X

cv

~FF �~SS ¼ 0 ð5Þ

The spatial operator R is introduced as a function of space and time including both the
convective and artificial dissipation fluxes, Fd, provided by shock capturing schemes:

R ¼
X

cv

~FF �~SS þ Fd ð6Þ

In this research, Jameson scheme is used for artificial dissipation fluxes. Taking
advantage of this simplified notation, a semi-discrete form of the governing equations
can be written as:

V
@W

@ t
þ R ¼ 0 ð7Þ

Assuming that the solution W and spatial operator R are periodic in time, both can be
represented by separate Fourier series:

W ¼
Xk¼ N�1

2ð Þ

k¼� N�1
2ð Þ

ŴWke
ikvt ð8Þ

R ¼
Xk¼ N�1

2ð Þ

k¼� N�1
2ð Þ

R̂Rke
ikvt ð9Þ

These discrete Fourier transforms can be substituted into the semi-discrete form of the
governing equations (7), and the time derivative of the state variable can be moved
inside the series summation. Taking advantage of the orthogonality of the Fourier
terms a separate equation for each wave number, k, is obtained:

i kV v ŴWk þ R̂Rk ¼ 0 ð10Þ

However, each coefficient R̂Rk of the transformation of the residual depends on all
coefficients of ŴWk, because R(W(t)) is a nonlinear function of W(t). Thus Equation (10)
represents a nonlinear set of equations which must be solved iteratively. The solver
attempts to find a solution, W, that drives this system of equations to zero for all wave
numbers, but at any iteration in the solution process the unsteady residual, ÎIk, will be
finite (McMullen, 2003):

ÎIk ¼ i kV vŴWk þ R̂Rk ð11Þ

4. Solution procedure
The nonlinearity of the unsteady residual stems from the spatial operator. There are
two approaches for calculating the spatial operator expressed in the frequency domain.
The first uses a complex series of convolution sums to calculate R̂Rk directly from ŴWk.
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Such an approach was discussed in Hall’s introductory paper (Hall et al., 2000) on
harmonic balance techniques. Hall justly discarded the approach due to its massive
complexity (considering artificial dissipation schemes and turbulence modeling) and
the cost that scales quadratically with the number of modes N (McMullen, 2003).

The alternative proposed by Hall with some implementations by McMullen (2003) is
to use a pseudo-spectral approach that relies on the computational efficiency of the fast
Fourier transform (FFT). A diagram detailing the transformations used by the pseudo-
spectral approach is provided in Figure 1.

The pseudo-spectral approach begins by assuming that ŴWk is known for all wave
numbers. Using an inverse FFT, ŴWk can be transformed back to the physical space
resulting in a state vector W(t) sampled at evenly distributed intervals over the time
period. At each of these time instances the steady-state operator R(W(t)) can be computed.
An FFT is then used to transform the spatial operator to the frequency domain where R̂Rk

is known for all wave numbers. The unsteady residual ÎIk can then be calculated by adding
R̂Rk to the spectral representation of the temporal derivative i kV vŴWk (McMullen, 2003).
Advancing in pseudo time is stopped when unsteady residual ÎIk reaches to a desirable
minimum value. Since ŴWk are known for all wave numbers, transforming back to the
physical space using Equation (8) at a given time instance leads to the solution W at that
instance. Thus, pressure coefficient can be calculated at the given time instance.

The cost of evaluating the spatial operator is the product of the cost of evaluating a
steady-state spatial operator and the number of time instances used to represent the
solution N. The cost of the FFT is proportional to N ln(N). For most realistic values of N
(N ¼ 1 ! 10) the cost of the pseudo-spectral approach is determined by the cost
associated with calculating the spatial operator (McMullen, 2003).

One of the advantages of the pseudo-spectral approach is its flexibility in admitting
different forms of the nonlinear operators. Although this research will use finite
volume formulations, the application of the pseudo-spectral approach is equally well
suited for finite difference or other types of spatial operators (McMullen, 2003).

5. Boundary conditions
Boundary conditions are applied by introducing ghost cells near wall and the cells
adjacent to the farfield. The density at the ghost cell near wall is set to be equal to the
cell value adjacent to the wall.

Since inviscid flow solutions are studied, no flow across the wall is allowed. This
requires the condition ð~VVw � ~VVbÞ : n̂n ¼ 0 to be satisfied at the wall, where ~VVw and ~VVb

denote flow velocity at the wall and the body velocity, respectively. n
_

is normal unit
vector pointed outward the wall. Therefore, velocity components in the ghost cells near
wall are computed as follows:

~VVg ¼ ~VVi;j � 2 ½ ð~VVi;j � ~VVbÞ : n̂n � n̂n ð12Þ

Figure 1.
Simplified dataflow
diagram of the time

advancement scheme
illustrating the pseudo-

spectral approach used in
calculating the nonlinear

spatial operator R
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In this equation ~VVi;j is flow velocity in the cell adjacent to the wall.
The pressure in the ghost cells near wall is evaluated from the interior cells values

considering wall acceleration. Thus, ghost cells pressure is calculated by simple
discritization of the following equation:

@P

@n
¼ ��~aaW �~nn ð13Þ

where~aaW is the wall acceleration.
Boundary conditions in the ghost cells near farfield are also determined based on

Riemann invariants applied to the farfield boundaries. To do this, the coordinate frame
for the Riemann invariants is chosen along the pointing normal to the cell face and
conservation of mass and momentum equations for one-dimensional flow along this
direction are simplified into a system of material derivatives. Therefore, combinations
of invariants according to the right and left running characteristics will lead to the
boundary values for the problem.

6. Test case description
In this paper, NLFD results are compared with other results for three different cases.
Two of them are associated with Landon’s experiments as part of AGARD report
(Landon, 2000). The third case is related to the results obtained from a finite-volume-
based commercial CFD software. In this case, response to a forced oscillation of an
airfoil is calculated.

In all cases mentioned above, airfoil is pitching about its quarter chord and its
incidence is changed with time as the following:

a ¼ am þ a0 SinðvtÞ ð14Þ

�m and �0 are mean incidence and pitch amplitude, respectively. ! is the angular
frequency and is given by:

v ¼ 2 k V1 = C ð15Þ

where k is the reduced frequency, V1 is the free-stream velocity and C is the chord
length.

Important parameters of AGARD test cases are summarized in Table I.
While incidence angle increases in CT1 AGARD case, a shock wave appears on the

upper surface and there is no shock wave on the lower surface (Uygun and Kirkkopru,
2007). In CT5 AGARD case, while airfoil is pitching, shock waves appear on the lower
and upper airfoil surfaces in succession (Uygun and Kirkkopru, 2007).

Table I.
Important parameters of
AGARD test cases

Description Variable AGARD test case; CT1 AGARD test case; CT5

Mean angle of attack (deg) �m 2.89 0.016
Pitch amplitude (deg) �0 2.41 2.51
Reynolds number Re1 4.8 � 106 5.5 � 106

Mach number M1 0.6 0.755
Reduced frequency k 0.0808 0.0814
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Unstructured triangular mesh is used to calculate the response to the forced oscillation
in the CFD software. In this case, the grid used for calculation of the flow field at
different time instances is generated by the software. This mesh topology is dictated
due to software restriction in domain remeshing in each time steps. Table II indicates
parameters of this chosen case.

Two different mesh sizes for mesh independency study of this case are considered.
Table III presents their characteristics.

Figure 2 depicts the grid with 17,740 cells.
Mesh independency for the third case is studied comparing the results obtained by

the software. Figure 3 presents pressure distribution as incidence angle reaches its
maximum value, that is, 3�. Results show that there are little differences between these
two mesh sizes. So, the mesh sized with 17,740 cells is used for comparison of results
with NLFD results.

7. Pitching airfoil description
In this paper, three different girds of C-mesh topology are used for NLFD calculations.
Table IV provides their defining characteristics.

Table II.
Parameters of the

third case

Description Variable Third test case

Mean angle of attack (deg) �m 1.5
Pitch amplitude (deg) �0 1.5
Mach number M1 0.7
Reduced frequency k 0.1

Table III.
Different mesh

characteristics of the
third case

Number of triangular cells
Mean boundary distance

(unit chord)
Number of grid points

on the airfoil surface

17,740 22 490
30,498 22 614

Figure 2.
Nearfield picture of

unstructured grid with
17,740 cells
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Figure 4 provides a nearfield picture of grid dimensioned by 47 � 365.

8. Computational results and discussion
Grid independency of NLFD results is studied at arbitrary time instances for different
test cases. This study for the CT1 and CT5 test cases has been done at 4.56 and 2.34�,
respectively, while the airfoil pitches up. Grid study for the third case is at 3�. Figures
5-7 indicate the results using three, five and seven harmonics. These results show the

Figure 3.
Pressure distribution on
the airfoil surfaces using
two mesh sizes for the
third case

Table IV.
Description of meshes
employed for NLFD
calculations

Dimensions
Mean boundary distance

(unit chord)
Mean grid spacing at wall

(unit chord)
Number of grid points on

the airfoil surface

31 � 299 22 0.0036 251
47 � 365 22 0.0026 297
61 � 385 22 0.0016 317

Figure 4.
Nearfield picture of grid
dimensioned by 47 � 365
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grid with 47 � 365 cells has adequate grid density to be used for calculation. All
results shown from now on are related to this grid type.

Figures 8 and 9 present pressure distribution at various time instances for CT1 and
CT5 test cases, respectively. Experimental results are also included. As mentioned
earlier, a moving shock appears on the upper and no moving shock occurs on the lower
airfoil surface in CT1 test case while CT5 test case involves moving shocks on both
airfoil surfaces. As can be seen, NLFD can predict fair pressure coefficient in CT1 test
case on the lower and unfair pressure distribution around the positions in which shock
appears in its periodic motion on the upper surface. There are also little differences
between pressure coefficients on the lower surface using three, five and seven
harmonics. In CT5 test case, which involves moving shocks on both surfaces, NLFD
predicts unreasonable pressure distribution on both surfaces around shock positions.

Figure 10 indicates pressure distribution for the case run by CFD software at
various arbitrary time instances. The results obtained by this software show that a
moving shock occurs only on the upper surface. As can be seen, NLFD method can
predict reasonable pressure distribution on the lower surface and results agree well
with those of the CFD software. However, pressure distribution around shock positions
on the upper cannot be predicted well.

Although NLFD predicts incorrect pressure distribution around shock positions,
however, Figures 8-10 shows that pressure distributions away from shock positions

Figure 5.
Grid study for CT1 (top

left), CT5 (top right) and
the third (bottom) test

case using three
harmonics
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Figure 7.
Grid study for CT1 (top
left), CT5 (top right) and
the third (bottom) test
case using seven
harmonics

Figure 6.
Grid study for CT1 (top
left), CT5 (top right) and
the third (bottom) test
case using five harmonics
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Figure 9.
Pressure distribution for
CT5 test case at various

time instances

Figure 8.
Pressure distribution for
CT1 test case at various

time instances
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Figure 10.
Pressure distribution for
the third case at various
time instances
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predicted by the NLFD method agree with those of the experiment or CFD software
and little differences exist using three, five or seven harmonics.

Figure 11 presents normal force coefficient for CT1, CT5 and the third case vs
incidence angle. Although there is undesirable pressure distribution around shock
positions on the surface in which moving shock occurs, calculated normal forces are in
good agreement with the experimental or CFD software results. There are also little
differences between results using three, five or seven harmonics.

Although no convergence acceleration techniques are used in this research, however
a comparative study regarding required computational time between the NLFD
method and CFD software that is considered as a time accurate solver shows that the
NLFD method with a low number of harmonic needs less computational time. The
NLFD method is amenable to many convergence acceleration techniques used for

Figure 11.
Normal force coefficient

for CT1 (top left), CT5
(top right) and third

(bottom) test cases using
different number of

harmonics
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steady-state flows. Using these techniques, better efficiency concerning computational
time can be obtained, so this method would be more efficient than time accurate
methods (McMullen and Jameson, 2006).

9. Conclusion
In this research, the capability of NLFD method in predicting details of unsteady
transonic flow fields is investigated. Surface pressure coefficients in the time domain
on pitching airfoils at three specified reduced frequency are presented. In the studied
cases, at most seven harmonics are considered. Grid independency studies also show
that the presented pressure distributions are mesh independent. Results show that
NLFD method can predict reasonable pressure distribution in the time domain except
in vicinity of moving shock positions with a few numbers of harmonics. Although this
method takes less computational time compared to the conventional time accurate
methods and gives accurate estimates of global properties such as lift coefficients,
however unfair pressure distributions in the time domain may be predicted by the
NLFD method around shock positions. This inaccurate pressure coefficient close to the
shock positions is mainly due to high nonlinear effects introduced by shock wave. It is
also shown that good pressure distributions in the time domain are predicted away
from shock positions with only a few numbers of harmonics.
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